Autophagy is Impaired in the Tibialis Anterior of Dystrophin Null Mice Œ PLOS Currents Muscular Dystrophy
نویسندگان
چکیده
Background Duchenne muscular dystrophy is a lethal, progressive, muscle-wasting disease caused by mutations in the DMD gene. Structural remodelling processes are responsible for muscle atrophy and replacement of myofibers by fibrotic and adipose tissues. Molecular interventions modulating catabolic pathways, such as the ubiquitin-proteasome and the autophagy-lysosome systems, are under development for Duchenne and other muscular dystrophies. The Akt signaling cascade is one of the main pathways involved in protein synthesis and autophagy repression and is known to be up-regulated in dystrophin null mdx mice. Results We report that autophagy is triggered by fasting in the tibialis anterior muscle of control mice but not in mdx mice. Mdx mice show persistent Akt activation upon fasting and failure to increase the expression of FoxO3 regulated autophagy and atrophy genes, such as Bnip3 and Atrogin1. We also provide evidence that autophagy is differentially regulated in mdx tibialis anterior and diaphragm muscles. Conclusions Our data support the concept that autophagy is impaired in the tibialis anterior muscle of mdx mice and that the regulation of autophagy is muscle type dependent. Differences between muscle groups should be considered during the pre-clinical development of therapeutic strategies addressing muscle metabolism.
منابع مشابه
Autophagy is Impaired in the Tibialis Anterior of Dystrophin Null Mice
Background Duchenne muscular dystrophy is a lethal, progressive, muscle-wasting disease caused by mutations in the DMD gene. Structural remodelling processes are responsible for muscle atrophy and replacement of myofibers by fibrotic and adipose tissues. Molecular interventions modulating catabolic pathways, such as the ubiquitin-proteasome and the autophagy-lysosome systems, are under developm...
متن کاملThe FVB Background Does Not Dramatically Alter the Dystrophic Phenotype of Mdx Mice
The mdx mouse is the most frequently used animal model for Duchenne muscular dystrophy (DMD), a fatal muscle disease caused by the loss of dystrophin. Mdx mice are naturally occurring dystrophin-null mice on the C57BL/10 (BL10) background. We crossed black mdx to the white FVB background and generated mdx/FVB mice. Compared to that of age- and sex-matched FVB mice, mdx/FVB mice showed character...
متن کاملα1-Syntrophin–deficient skeletal muscle exhibits hypertrophy and aberrant formation of neuromuscular junctions during regeneration
Alpha1-syntrophin is a member of the family of dystrophin-associated proteins; it has been shown to recruit neuronal nitric oxide synthase and the water channel aquaporin-4 to the sarcolemma by its PSD-95/SAP-90, Discs-large, ZO-1 homologous domain. To examine the role of alpha1-syntrophin in muscle regeneration, we injected cardiotoxin into the tibialis anterior muscles of alpha1-syntrophin-nu...
متن کاملThe proteasomal inhibitor MG132 prevents muscular dystrophy in zebrafish Œ PLOS Currents Muscular Dystrophy
Using sapje zebrafish which lack dystrophin, we have assessed both the quantitation of muscle damage in dystrophic fish, and the efficacy of the proteasomal inhibitor MG132 in reducing the dystrophic symptoms. Fourier analysis of birefringence patterns in normal and dystrophic fish was found to be a simple and reliable quantitative measure of muscle damage. MG132, as in mdx mouse, was found to ...
متن کاملA proteasome inhibitor fails to attenuate dystrophic pathology in mdx mice Œ PLOS Currents Muscular Dystrophy
Dystrophin deficiency leads to increased proteasome activity in skeletal muscle. Previous observations suggest short-term inhibition of the proteasome restores dystrophin expression. Contrary to our hypothesis, eight days of MG-132 administration to mdx mice increased susceptibility to contraction induced injury and Evan’s blue dye penetration compared to controls. Following six weeks of MG-132...
متن کامل